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Abstract

Background: Protein interactions are crucial components of all cellular processes. Recently, high-throughput

methods have been developed to obtain a global description of the interactome (the whole network of protein

interactions for a given organism). In 2002, the yeast interactome was estimated to contain up to 80,000

potential interactions. This estimate is based on the integration of data sets obtained by various methods (mass

spectrometry, two-hybrid methods, genetic studies). High-throughput methods are known, however, to yield a

non-negligible rate of false positives, and to miss a fraction of existing interactions.

The interactome can be represented as a graph where nodes correspond with proteins and edges with pairwise

interactions. In recent years clustering methods have been developed and applied in order to extract relevant

modules from such graphs. These algorithms require the specification of parameters that may drastically affect

the results. In this paper we present a comparative assessment of four algorithms: Markov Clustering (MCL),

Restricted Neighborhood Search Clustering (RNSC), Super Paramagnetic Clustering (SPC), and Molecular

Complex Detection (MCODE).

Results: A test graph was built on the basis of 220 complexes annotated in the MIPS database. To evaluate the

robustness to false positives and false negatives, we derived 41 altered graphs by randomly removing edges from

or adding edges to the test graph in various proportions.

Each clustering algorithm was applied to these graphs with various parameter settings, and the clusters were

compared with the annotated complexes.

1



We analyzed the sensitivity of the algorithms to the parameters and determined their optimal parameter values.

We also evaluated their robustness to alterations of the test graph.

We then applied the four algorithms to six graphs obtained from high-throughput experiments and compared

the resulting clusters with the annotated complexes.

Conclusions: This analysis shows that MCL is remarkably robust to graph alterations. In the tests of robustness,

RNSC is more sensitive to edge deletion but less sensitive to the use of suboptimal parameter values. The other

two algorithms are clearly weaker under most conditions.

The analysis of high-througput data supports the superiority of MCL for the extraction of complexes from

interaction networks.

Background

Protein-protein interactions (PPI) play major roles in the cell: transient protein interactions are often

involved in post-translational control of protein activity; enzymatic complexes ensure substrate channeling

which drastically increases fluxes through metabolic pathways; large protein complexes play essential roles

in basal cellular mechanisms such as DNA packaging (histones), transcription (RNA polymerase),

replication (DNA polymerase), translation (ribosome), protein degradation (proteasome) . . .

Various methods have been used to detect PPI. Co-immunoprecipitation, co-sedimentation, and two-hybrid

systems have traditionally been used to characterize interactions at the level of a single protein complex.

More recently, high-throughput methods have been developed for large-scale detection of pairwise

interactions (two-hybrid systems, the split-ubiquitin method) [1–3] or multi-protein complexes (TAP-TAG,

HMS-PCI) [4–7].

In 2002, von Mering et al. estimated that data resulting from combined experimental and computational

approaches provide clues in favor of approximately 80,000 PPI in the yeast Saccharomyces cerevisiae [8].

Clearly, however, this information should be considered with caution, since all methods are known to yield

a non-negligible amount of noise (false positives) and to miss a fraction of existing interactions (false

negatives). The error rate depends strongly on the method, high-throughput and computational methods

being less reliable than traditional methods [9].

The network of interactions between proteins is generally represented as an interaction graph, where nodes
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represent proteins and edges represent pairwise interactions. Graph theory approaches have been applied

to describe the topological properties of the network: distribution of node degree (number of incoming and

outgoing edges per node), network diameter (average of the shortest distance between pairs of nodes),

clustering coefficient (proportion of the potential edges between the neighbors of a node that are effectively

observed in the graph). These analyses have led to the observation of some apparently recurrent properties

of biological networks: power-law degree distribution, small world, high clustering coefficients, and

modularity [10–15].

Beyond these descriptive statistics, an important challenge for modern biology is to understand the

relationship between the organization of a network and its function. In particular, it is essential to extract

functional modules such as protein complexes [16] or regulatory pathways [17] from global interaction

networks.

To achieve this goal, several clustering methods have been applied to the protein interactome graph in

order to detect highly connected subgraphs (e.g. [18–34]). These algorithms rely on very different

approaches. Each of them requires specifying several parameters, some of which may drastically affect the

results. To our knowledge, no systematic study has yet been performed to evaluate and compare these

programs. It is thus very difficult for a biologist to estimate the reliability of hypotheses emerging from

computer-based analyses of interaction networks.

In this paper we present a systematic quantitative evaluation of the capability of four clustering methods

for inferring protein complexes from a network of pairwise protein interactions. The four methods tested

here are Markov Clustering (MCL [35,36]), Restricted Neighborhood Search Clustering (RNSC [21]),

Molecular Complex Detection (MCODE [19]), and Super Paramagnetic Clustering (SPC [37]). For each

program, we sample the parameter space and select optimal parameters. We evaluate the robustness of the

programs to false positives and false negatives. The algorithms are then applied to six data sets from

high-throughput experiments.

Results and discussion
Algorithms

The four algorithms tested here rely on distinct approaches for extracting clusters from the graph (Table

1). We give hereafter a short conceptual description. More information can be found in the supplementary

material [see Additional file 1] and original publications.

The Markov Cluster algorithm (MCL) [35, 36] simulates a flow on the graph by calculating successive
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powers of the associated adjacency matrix. At each iteration, an inflation step is applied to enhance the

contrast between regions of strong or weak flow in the graph. The process converges towards a partition of

the graph, with a set of high-flow regions (the clusters) separated by boundaries with no flow. The value of

the inflation parameter strongly influences the number of clusters.

The second algorithm, Restricted Neighborhood Search Clustering (RNSC) [21]), is a cost-based local

search algorithm that explores the solution space to minimize a cost function, calculated according to the

numbers of intra-cluster and inter-cluster edges. Starting from an initial random solution, RNSC iteratively

moves a vertex from one cluster to another if this move reduces the general cost. When a (user-specified)

number of moves has been reached without decreasing the cost function, the program ends up.

The third algorithm, Super Paramagnetic Clustering (SPC) [37] is a hierarchical clustering algorithm

inspired from an analogy with the physical properties of a ferromagnetic model subject to fluctuation at

nonzero temperature. At first, SPC associates a spin with each node of the graph. Spins belonging to a

highly connected region fluctuate in a correlated fashion and nodes with correlated spins are placed in the

same cluster. When the temperature increases, the system becomes less stable and the clusters become

smaller.

The fourth method, Molecular Complex Detection (MCODE) [19], detects densely connected regions. First

it assigns a weight to each vertex, corresponding to its local neighborhood density. Then, starting from the

top-weighted vertex (seed vertex), it recursively moves outward, including in the cluster vertices whose

weight is above a given threshold. This threshold corresponds to a user-defined percentage of the weight of

the seed vertex.

Interaction graphs

From the collection of protein complexes annotated in the MIPS database [38], we constructed an

interaction graph by instantiating a node for each protein, and linking by an edge any two proteins that

belong to the same complex. This graph is hereafter referred to as the test graph. As depicted in Figure

1A, the structure of the original test graph is almost trivial: most complexes correspond to isolated

components. In this test graph each complex is represented as a clique (each protein is connected to each

other one). This generally does not reflect the actual complex structure, where each protein is linked to

specific partners. Consequently, this original graph is of poor value for evaluating the performances of

clustering algorithms on real data sets. This applies particularly to high-throughput data sets, which are

generally fragmentary (missing interactions), and noisy (false interactions).
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In order to evaluate the robustness of the algorithms to missing and false interactions, we generated 41

altered graphs from the original test graph, by combining addition and removal of edges in various

proportions. We refer to altered graphs as Aadd,del, where add and del indicate respectively the percentage

of added and deleted edges (percentages with respect to the number of edges in the original test graph).

Figure 1B shows an example of an altered graph A100,40, with 100% edge addition and 40% edge removal.

Another problem of evaluation is that a certain proportion of interacting proteins can be assigned to the

same cluster by chance. In order to estimate the random expectation of correct grouping, we built a

random graph by shuffling the edges between nodes of the test graph. With this type of randomization,

each node preserves the same number of links as in the original graph.

We also built 41 altered random graphs from the random graph, by randomly adding and removing random

edges in the same proportions as for the original test graph.

To each of these 84 graphs (test, altered test, random, altered random), we applied the four algorithms

described above, with varying parameter values. As a second way to estimate the random expectation,

each clustering result was also randomized so as to obtain a set of permuted clusters of the same sizes as

those obtained from the test graph or altered graphs.

Parameter optimization

The quality of a clustering result was evaluated by comparing each cluster with each annotated complex.

The complex-wise sensitivity (Sn) represents the coverage of a complex by its best-matching cluster (the

maximal fraction of proteins in the complex found in a common cluster). Reciprocally, the cluster-wise

Positive Predictive Value (PPV ) measures how well a given cluster predicts its best-matching complex (see

the chapter Methods for a detailed description of the matching statistics).

To estimate the overall correspondence between a clustering result (a set of clusters) and the collection of

annotated complexes, we computed the weighted means of all PPV values (averaged over all clusters) and

Sn values (averaged over all complexes). The resulting statistics, clustering-wise PPV and clustering-wise

Sn, provide complementary and somewhat contradictory information: when the number of clusters

decreases, the Sn increases and, in the trivial case where all proteins are grouped in a single cluster, the

calculated Sn reaches 1. Reciprocally, the PPV increases with the number of clusters, reaching 1 in the

trivial case where each protein is assigned to one separate cluster. In order to integrate the two statistics,

we computed a geometrical accuracy (Acc), defined as the geometrical mean of the averaged Sn and PPV

values.
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Each algorithm has one or more parameters that influence properties such as number of clusters, cluster

size, and cluster density (number of intra-cluster edges). For each algorithm we measured the impact of the

main parameters on Sn, PPV and Acc and selected the combination of parameters giving maximal

accuracy. This analysis revealed that some parameters have a drastic impact on accuracy, whereas others

have a limited effect.

Let us illustrate in more detail the procedure of parameter selection with the inflation parameter of the

MCL algorithm. With the original test graph, interestingly, the effect of this parameter is barely detectable

(Figure 2A). Yet this apparent robustness is an artifact due to the trivial structure of the graph. In the

MIPS data set used as a reference, most proteins (73%) are members of a single complex, so that most

complexes correspond to isolated components in the test graph (Figure 1A) on which the clustering is

performed. Consequently, the clustering algorithm tends to define one cluster per connected component,

irrespectively of the inflation parameter. Consistently with this interpretation, the number of clusters is

almost constant whatever the inflation parameter value (Figure 2B, blue curve). In contrast, when the

same algorithm is applied to a randomized graph, the number of clusters increases with the inflation

parameter (Figure 2B, gray curve).

The crucial impact of the inflation parameter becomes obvious when MCL is applied to highly altered

graphs. For example, for the altered graph A100,40 (Figure 2C), the increase in inflation causes a decrease

in Sn (red curve) and an increase in PPV (blue curve). These effects are explained by the fact that the

number of clusters increases with the inflation parameter (Figure 2D). The optimal tradeoff between Sn

and PPV is obtained for an inflation value of 1.7, and yields an Acc of 66% (green curve).

We performed the same analysis and selected the optimal parameter values for each one of the the 42

graphs (test and altered), as summarized in Table 2 for the MCL algorithm. Since the optimal parameter

values depend on the level of alteration, we cannot view one value as systematically optimal. We chose as a

general optimum the most frequent value in this table. This criterion ensures a good robustness to graph

alteration (it covers the widest range of graph alterations).

Note that in the case of the inflation parameter, the most frequent value (1.8) is especially well suited for

graphs with a high level of alteration, such as those resulting from high-throughput data. In addition, for

the less altered graphs, the accuracy is generally more robust to fluctuations of the inflation (the extreme

case of the unaltered test graph shown in Figure 2A,B is discussed above).

For the RNSC algorithm, we tested the impact of 7 parameters on the quality of the clustering. This

represents a total of 2,916 combinations of parameter values. Figure 3 displays the Sn (abscissa) and PPV
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(ordinate) obtained with the same altered graph as in Figure 1B (A100,40). Each dot corresponds to one

particular combination of parameter values. This figure shows that the RNSC algorithm is remarkably

robust to the choice of parameter values: all the results are grouped in a cloud, with an almost constant

PPV (58%) and a restricted range of Sn (between 61% and 87%).

The same analysis was carried out for each parameter of each algorithm. The complete tables of optimal

values for the 42 graphs using both Accuracy and Separation (see next section) are available as

supplementary material [see Additional file 2 and 3]. Table 3 synthesizes the optimal values obtained for

the four tested algorithms. These optimal values were systematically used for the robustness analysis in the

next section.

Robustness analysis

In this analysis, we chose fixed parameter values for each algorithm (Table 3) and analyzed the robustness

of the different algorithms to various levels of graph alteration (edge removal and addition).

Figure 4A displays the impact of edge addition on the geometric accuracy. Increasing proportions of edges

(0%, 5%, 10%, 20%, 40%, 80% and 100%) were randomly added to the test graph. MCL and RNSC are

barely affected by addition of up to 100% edges (blue and red curves, respectively). The performances of

MCODE and SPC are reasonably good for low values of noise, but drop to 40% when the percentage of

added edges increases to 100% (orange and green curves, respectively).

To estimate the random expectation, we performed for each clustering result a permutation test, by

shuffling the proteins between clusters. The number of clusters and their respective sizes thus remained

unchanged. The geometric accuracy of the permuted clusters is displayed with dotted lines in Figure 4A.

For MCL, RNSC and MCODE, the accuracy is relatively stable (between 15% and 22%). For SPC,

surprisingly, the accuracy of the permuted clusters progressively increases with the addition of edges,

reaching 38% when more than 80% egdes are added. This value almost equals that obtained with the

non-random altered graph A100,0. This illustrates the importance of the permutation test: the test makes it

possible to estimate the performance of an algorithm in terms of gains relative to the random expectation.

We inspected the clustering result in more detail in order to understand why the program can yield high

accuracy values even when clusters are permuted. This effect comes from the fact that, under the chosen

conditions, SPC yields a huge cluster of 567 proteins, plus a multitude of very small clusters of 1 or 2

proteins. The effect of the huge cluster is to artificially increase the Sn, since a good fraction of each

complex is covered by this cluster. Each of the very small clusters yields a high PPV : single-element
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clusters have by definition a PPV of 1, and 2-member clusters have a minimal PPV of 0.5. This particular

distribution of cluster sizes thus creates an artefactual situation by reaching, for two separate reasons,

reasonably high scores for both criteria (Sn and PPV ).

In order to circumvent this problem, we defined an additional statistic, which we call separation, as the

product of the proportion of complex elements found in the cluster by the proportion of cluster elements

found in the complex (see Methods for the formula). High separation values indicate a bidirectional

correspondence between a cluster and a complex: a maximal value of 1 is reached when a cluster

corresponds perfectly with a complex, i.e. when it comprises all of its proteins and nothing more.

The complex-wise separation indicates how well a given complex is isolated from the other complexes. The

maximal value for complex-wise separation is 1. The simplest way to obtain Sepcoi
= 1 is the perfect

match, i.e. when all the proteins in the complex are contained in a single cluster, and this cluster does not

contain any other protein (Table 4, cluster 1/complex 1). Yet the value of 1 can also be reached if the

complex is split into two or more clusters, if each of these clusters contains only members of the complex

(Table 4, complex 2 split into clusters 2 and 3). In other words, Sepcoi
= 1 indicates that the clustering

algorithm separates this complex perfectly from all other complexes (although this complex may be split

into several clusters).

Similarly, we defined a cluster-wise separation, which indicates how well a given cluster isolates one or

several complexes from the other clusters. The maximal value, Sepclj = 1, indicates that a cluster fully and

exclusively comprises all the elements of one or several complexes, i.e. it contains all the proteins of the

considered complex(es), and no other cluster contains any of these proteins.

The clustering-wise separation statistic integrates separation values over all complexes and clusters, and

indicates the general correspondence between a clustering result and the set of annotated complexes.

Separation is particularly relevant to assessing clustering algorithms like MCODE, which permit assigning

a protein to multiple clusters. Under some particular parameter combinations, this program tends to yield

highly redundant clusters. Table 5 shows a fragment of the contingency table indicating the number

mutual intersections between the 607 clusters obtained from the unaltered test graph. For example, the 50

first rows/columns show a series of imbricated clusters, each resulting from the addition of one node to the

preceding cluster. Such strongly overlapping clusters artificially increase the performance, since a set of

clusters representing the same complex will be taken into account multiple times in the average PPV .

Cluster-wise separation penalizes this effect by using the marginal sums rather than the cluster size. Thus,

if a method generates many redundant clusters, each one intersecting with a given complex, the marginal
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sum will increase drastically, and Sepcl will be reduced accordingly. Note that the result of Table 5 is not

representative of all MCODE conditions: when appropriate parameters are chosen, the level of mutual

overlap between clusters is reasonable.

Figure 4B displays the impact of edge addition on clustering-wise separation. The general trends are

similar to those revealed by the accuracy curves (Figure 4A), but the random expectation curves are now

roughly horizontal for SPC as well as for the other algorithms. We defined a second set of parameters

optimized for separation, in the same way as described above for accuracy. These separation-optimized

parameters are displayed in Table 3 and were used for all separation curves in this robustness analysis

(right panels in Figure 4).

In Figure 4, C and D, increasing proportions (0%, 5%, 10%, 20%, 40%, and 80%) of edges are randomly

removed from the test graph. The general trend is for RNSC and MCL to outperform the other two

algorithms under most conditions. RNSC, however, shows a higher sensitivity to edge removal, and its

performance strongly decreases when more than 40% of the edges are removed. SPC is quite robust to edge

removal, but its performance remains lower than that of MCL under all conditions. Note that this removal

experiment is not very indicative of algorithm capability under realistic conditions, because the

partitioning of the test graph corresponds almost with complex composition (Figure 1A). Thus, when edges

are simply removed, this partitioning is mostly maintained: given the high level of intra-complex

connectivity, most complexes remain linked, and no new inter-complex link is created.

In order to obtain a realistic estimate of algorithm robustness, we thus need to combine edge addition and

removal. Figure 4E and F shows the robustness to edge removal, starting from a graph with 100% edge

addition. The performances of all programs are of course reduced as compared to Figures 4C and 4D. In

terms of accuracy (Figure 4E), RNSC and MCL show grossly similar behaviours: the accuracy shows a

good robustness in the low range of removal percentages (0-40%) but strongly decreases at higher

percentages (80%). Yet in terms of separation (Figure 4F), RNSC shows a better performance than MCL

at low rates of removal. The separation values of all algorithms drop to their respective levels of the

random expectation when 80% of the edges are removed. MCODE and SPC show generally low

performance, and are drastically affected by the combination of addition and removal. The performance of

SPC is similar to that obtained by selecting random clusters, in terms of both accuracy (Figure 4E) and

separation (Figure 4F).

Figures 4G and 4H show the effect of edge addition on graphs from which 40% of the edges had previously

been removed. These curves confirm the trends observed in Figures 4A and 4B: MCL and RNSC are
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weakly affected by edge addition, but as little as 20% edge addition suffices to prevent SPC from

identifying the complexes (Figure 4H). MCODE is relatively robust to edge addition, but shows a weaker

performance than MCL and RNSC over the whole range of conditions.

Analysis of data sets obtained in high-throughput experiments

In the previous chapters our evaluations were based on artificial graphs obtained by adding and removing

various proportions of edges to a reference network (the MIPS complexes). The next step was to evaluate

the capability of these algorithms to extract relevant information from high-throughput data sets. To this

end, we downloaded from the GRID database [39] six data sets representing the network of protein

interactions in the yeast Saccharomyces cerevisiae. Two of these data sets consist of pairs of interacting

proteins detected by the two-hybrid technique published respectively by Uetz et al. [1] and Ito et al. [2].

The four other data sets contain protein complexes characterized by mass spectrometry, published

respectively by Gavin et al. [4, 6], Ho et al. [5], and Krogan et al. [7] (Table 6). For each of these data sets

we built a graph with one node per protein, and one edge per interaction.

We then ran the four clustering algorithms on these graphs, with the optimal parameters determined in the

first part of this study. The clusters obtained from these high-throughput networks were compared with

the complexes annotated in the MIPS database by computing the same statistics as described above (Table

6, Figure 5). In each case, a negative control was done by calculating the same statistics on permuted

clusters (shaded boxes in Figure 5).

Some precautions should be taken before interpreting these results. In particular, it is not trivial to

interpret the “positive predictive value”, as our reference set is the MIPS collection, filtered to discard any

high-throughput result. This collection should by no means be considered exhaustive, since the complexes

detected by previous studies represent only a fraction of all existing complexes. High-throughput methods

are thus expected to yield many complexes that have not previously been characterized by other methods.

Thus, interactions detected by high-throughput methods that are not annotated in MIPS cannot be

considered “false positives”. The same holds true for cluster-wise separation. Thus, the PPV and

cluster-wise separation values should be interpreted as an indication of the fraction of high-throughput

results which are also detected by other methods and have been annotated in the MIPS so far. In contrast,

the sensitivity is likely to yield more directly relevant information, by indicating the fraction of annotated

complexes recovered in the clusters obtained from high-throughput data. Bearing in mind these

limitations, we may now analyse the data presented in Table 6 and Figure 5.
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An important criterion for this analysis is the contrast between the scores reached with the real clustering

results and the random expectation estimated with permuted clusters. A look at this contrast already

reveals some general characteristics of the data sets. Whatever the clustering method used, the Sep values

obtained were similar for the real and pemuted clusters in the case of the data sets resulting from

two-hybrid experiments [1, 2]. This confirms the conclusions of Von Mering et al., who compared the

positive predictive value (called “accuracy” in their paper) and sensitivity (“coverage”) of the interaction

graphs obtained by various high-throughput methods [8], and who also observed very poor values for the

two-hybrid data sets. The HMS-PCI data set [5] shows a better contrast between real and permuted

clusters, but the best results are clearly obtained with the three other mass-spectrometry data sets [4, 6, 7].

We will thus focus on these three data sets in our comparison of the algorithms.

Compared to the other algorithms, MCODE yields a lower number of clusters. It generally yields a high

sensitivity and PPV . It is characterized by very weak cluster-wise separation (Figure 5A), contrasting

with a higher complex-wise separation (Figure 5B). The resulting clustering-wise separation values (Figure

5C) are lower than for MCL but comparable or greater than separation value of the other algorithms.

Moreover, despite its relatively weak general performance, MCODE interestingly shows the best

performances for the negative control (i.e. the lowest values). This reflects the fact that this algorithm has

the capability to discard nodes from the clustering result (unassigned nodes). This propriety also explains

the lower number of clusters returned by this algorithm. In addition, this property enables the program to

discard most nodes when a random graph is submitted, but this seems to be at the expense of sensitivity

with real interaction graphs.

SPC is characterized by a high sensitivity and a low PPV. Yet the high sensitivity is an artifact due to the

presence of one mega-cluster, generally accompanied by a multitude of mini-clusters. The asymmetry

between cluster sizes is revealed by the differences between the mean and median numbers of proteins per

cluster. For Gavin (2002), for example, SPC yields 87 clusters with a mean size of 15.5 but with a median

of only 2 proteins per cluster. The mega-cluster includes no less than 1074 proteins and thus comprises

most complexes, raising the sensitivity to Sn = 91.8%. The artificial aspect is indicated by the fact that

the permuted clusters also reach a very high score Sn = 81.4%. As discussed above, this bias is avoided by

the separation statistics, which yield relatively low values for SPC. Similar figures are obtained with the

other data sets.

For all the data sets, RNSC yields a large number of mini-clusters (the average number of proteins per

cluster is typically 2, the median is 1 or 2), plus a few clusters of reasonable size (up to 35 proteins per
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cluster). It shows a relatively high cluster-wise separation value (Figure 5A) but a lower complex-wise

separation value (Figure 5B), resulting in a reasonable tradeoff in terms of clustering-wise separation

(Figure 5C). The contrast between real and permuted clusters is low, however, even for the

mass-spectrometry data with which other algorithms reach a good contrast.

Finally, MCL clearly outperforms the other algorithms in terms of general performance (Table 6, Acc, Sep)

and also as regards the contrast between real and permuted clusters (Table 6, Figure 5). This general

performance results from a good balance between cluster-wise (Figure 5A) and clustering-wise (Figure 5B)

separation.

Conclusions

We have evaluated the capability of four graph-based clustering algorithms to extract protein complexes

from networks of protein-protein interactions. This evaluation has led us to elaborate a testing procedure

for the selection of optimal parameters and the analysis of robustness to noise. We have defined new

matching statistics called separation to circumvent some pitfalls of classical estimators (Sensitivity, PPV,

Accuracy). The methodology proposed here could be used as well to assess the capabilities of other

clustering algorithms with other data sets.

To study the ability of the tested algorithms to extract protein complexes from an interaction network, we

built a test graph from the complexes annotated in the MIPS database.

In a first step we assessed the impact of the parameters of each algorithm, and determined the optimal

values for extracting complexes from an interaction network. This analysis shows that under most

conditions, RNSC and MCL outperform MCODE and SPC. RNSC is remarkably robust to variations in

the choice of parameters, whereas the other algorithms require appropriate tuning in order to yield relevant

results. Secondly we assessed the robustness of these programs to noise and to missing information in the

data, by randomly adding and removing edges from the test graph. This analysis clearly revealed

differences between the algorithms, highlighting the robustness of MCL, and to a lesser extent RNSC, to

graph alterations.

We then applied the same four algorithms to interaction networks obtained from six high-throughput

studies. This analysis revealed that whatever the algorithm used, some data sets provide insufficient

information for extracting the correct protein complexes. An analysis of the more informative data sets

confirmed the general superiority of MCL over the three other algorithms tested here.

An important limitation of the present evaluation is that it was performed by naive users. Any algorithm
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is likely to work better in the hands of its own developer than in those of external users. As we did not

participate in the development of any of the tested algorithms, our evaluation may underestimate the

capabilities of some of the algorithms tested here. An advantage of such an external evaluation, however, is

that the evaluators are not biased by better knowledge of one particular algorithm. Consequently, our

evaluation might be biased in favour of algorithms which are more user-friendly, or easier to configure. It

thus reflects a compromise between algorithm user-friendliness and efficiency.

Another limitation is that all of our analyses were performed on unweighted graphs, because our reference

graph (the MIPS complexes) does not contain any information that would enable us to assign reliability

values (weights) to the edges. It should be mentioned that MCL and SPC can deal with weighted graphs

and are likely to give better performances if the weights reflect the reliability of the links between

proteins [20].

Methods
Test graphs

Annotated protein complexes

In order to test the ability of each algorithm to extract complexes from a network of binary interactions,

we built a graph representing a large collection of experimentally characterized complexes. We collected

from the MIPS database the collection of protein complexes annotated for the yeast Saccharomyces

cerevisiae [40], from which we discarded those resulting from high-throughput experiments [41]. The

filtered collection contains some cases of hierarchically related complexes. For example, the complex

annotated as “ribosome” includes the small and large ribosomal subunits. In such cases, we discarded the

parent complex (ribosome) and retained the sub-complexes only (small and large subunits). The final set

comprises 220 complexes. It was converted to a graph where each node represents one polypeptide. A link

(edge) was created between each pair of polypeptides involved in a common complex. The resulting graph

(referred to as test graph) contains 1,095 polypeptides and 12,261 interactions (Figure 1A).

Altered graphs

A series of 41 altered graphs was derived from the test graph described above by combining various

proportions of random edge deletions (0%, 5%, 10%, 20%, 40%, 80%) and additions (0%, 5%, 10%, 20%,

40%, 80%, 100%). We refer to altered graphs as Aadd,del where add and del indicate, respectively, the

percentage of added and deleted edges.
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Random expectation

The random expectation of clustering results was estimated in two ways: with randomized graphs and

permuted clusters.

Randomized graphs

A randomized graph was obtained by shuffling all the edges of the test graph. This procedure preserves the

connectivity of each node while reallocating edges at random. We also generated 41 altered randomized

graphs by randomly adding edges to and deleting edges from the random graph in the same proportions as

for the test graph. We refer to altered randomized graphs as Radd,del, where add and del indicate

respectively the percentage of added and deleted edges.

Permuted clusters

A set of permuted clusters can be obtained from a clustering result by shuffling the associations between

proteins and clusters. This randomization procedure preserves cluster sizes. We applied it to each

clustering result obtained with the test graph and the altered graphs.

Matching statistics

Each clustering result was compared with the annotated complexes by building a contingency table, as

schematically exemplified in Table 4. Having n complexes and m clusters, the contingency table T is a

n · m matrix where row i corresponds to the ith annotated complex, and column j to the jth cluster. The

value of a cell Ti,j indicates the number of proteins found in common between complex i and cluster j.

Note that some proteins belong to several complexes, and that with one one algorithm (MCODE), some

proteins may be assigned to multiple clusters or not assigned to any cluster. The marginal sums (per row

or per column) of the contingency table thus do not always correspond with complex or cluster sizes. For

example, cluster 4 in Table 4 contains 16 proteins, but the sum of intersections between this cluster and all

complexes is 18, because complexes 3 and 4 have 2 proteins in common. Complex 3 contains 20 proteins,

but the sum of its intersections with clusters is 17, because 3 of its proteins are not assigned to any cluster.

On the contrary, the fourth complex of Table 4 contains 8 proteins, but there are 9 assignations to clusters

in all, because one protein is assigned to two separate clusters.

Sensitivity, positive predictive value (PPV ), and accuracy are classically used to measure the

correspondence between the result of a classification and a reference. We describe hereafter how these
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concepts can be adapted to measuring the match between a set of protein complexes and a clustering

result. As discussed in the text, these statistics can in some particular cases lead to erroneous

interpretations. We thus define an additional statistic, which we call separation.

Sensitivity

Considering the annotated complexes as our reference classification, we define sensitivity as the fraction of

proteins of complex i which are found in cluster j.

Sni,j = Ti,j/Ni

In this formula, Ni is the number of proteins belonging to complex i. We also calculate a complex-wise

sensitivity Sncoi
as the maximal fraction of proteins of complex i assigned to the same cluster. Sncoi

reflects the coverage of complex i by its best-matching cluster.

Sncoi
= maxm

j=1Sni,j

To characterize the general sensitivity of a clustering result, we compute a clustering-wise sensitivity as the

weighted average of Sncoi
over all complexes.

Sn =

∑n

i=1 NiSncoi
∑n

i=1 Ni

Positive Predictive Value

The positive predictive value is the proportion of members of cluster j which belong to complex i, relative

to the total number of members of this cluster assigned to all complexes.

PPVi,j = Ti,j/
n

∑

i=1

Ti,j = Ti,j/T.j

T.j is the marginal sum of a colum j. As exemplified by the fourth cluster in Table 4, this marginal sum

can in some cases differ from the cluster size, because some proteins can belong to several complexes.

We also calculate a cluster-wise positive predictive value PPVclj , which represents the maximal fraction of

proteins of cluster j found in the same annotated complex. PPVclj reflects the reliability with which

cluster j predicts that a protein belongs to its best-matching complex.

PPVclj = maxn
i=1PPVi,j
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To characterize the general PPV of a clustering result as a whole, we compute a clustering-wise PPV as

the weighted average of PPVclj over all clusters.

PPV =

∑m

j=1 T.jPPVclj
∑m

j=1 T.j

Accuracy

The geometric accuracy (Acc) indicates the tradeoff between sensitivity and predictive value. It is obtained

by computing the geometrical geometrical mean of the Sn and the PPV .

Acc =
√

Sn · PPV

The advantage of taking the geometric rather than arithmetic mean is that it yields a low score when

either the Sn or the PPV metric is low. High accuracy values thus require a high performance for both

criteria. It is of particular importance to use the geometric accuracy, as the arithmetic mean would give a

false idea of quality in the trivial cases where all proteins are assigned to a single cluster

(Sn = 1 ⇒ Accarithm > 0.5) or where, on the contrary, each protein is assigned to a single-element cluster

(PPV = 1 ⇒ Accarithm > 0.5).

Separation

The contingency table indicates the absolute frequency of intersections between complexes and clusters.

From these values, we derive relative frequencies with respect to the marginal sums, either per row

(Frowi,j
) or per column (Fcoli,j

).

Frowi,j
=

Ti,j
∑m

j=1 Ti,j

Fcoli,j
=

Ti,j
∑n

i=1 Ti,j

= PPVi,j

Note that the frequency per column is identical to the PPV defined above. The frequency per row, on the

contrary, can differ from the sensitivity for some algorithms, if the algorithm permits assigning a protein to

multiple clusters (Table 4, complex 4), or leaving some proteins unassigned (Table 4, complex 3). In such

cases, the frequency per row provides a more drastic criterion than the sensitivity defined above.

We define the separation as the product of column-wise and row-wise frequencies.

Sepi,j = Fcoli,j
· Frowi,j
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The separation is comprised between 0 and 1. The maximal value Sepi,j = 1 indicates a perfect and

exclusive correspondence between complex j and cluster i: it indicates that the cluster contains all the

members of the complex and only them (Table 4, complex 1 and cluster 1). In addition, the separation

statistic deals efficiently with multiple assignations. It penalizes cases where proteins of a given complex

are assigned to multiple clusters, by using row sums rather than complex sizes.

The complex-wise separation Sepcoi
is calculated as the sum of separation values for a given complex i.

Sepcoi
=

m
∑

j=1

Sepi,j

Reciprocally, we calculate a cluster-wise separation, which reflects the concentration of one or several

complexes within a given cluster.

Sepclj =

n
∑

i=1

Sepi,j

To estimate a clustering result as a whole, clustering-wise Sepco and Sepcl values are computed as the

averages of Sepcoi
over all complexes, and of Sepclj over all clusters, respectively.

Sepco =

∑n

i=1 Sepcoi

n

Sepcl =

∑m

j=1 Sepclj

m

We then compute the geometrical separation (Sep) as the geometrical mean of Sepco and Sepcl.

Sep =
√

Sepco · Sepcl

Computation

Clustering was performed on a PC cluster of 40 nodes. Statistical treatments were done and figures made

with the freeware statistical package R [42]. Graphical representations of the interaction networks were

done with CytoScape, an open-source, platform-independent environment for the visualization and analysis

of biological networks [43, 44].

Graphs of protein interactions were manipulated using the Java classes developed by the aMAZE

group [45, 46].
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Figures
Figure 1 - Graphical representation of interaction networks

(A) Test graph built from the complexes annotated in the MIPS database (high-throughput data were

excluded). (B) Altered graph A100,40 with 100% of random edge addition (red) and 40% of random edge

removal.

20



Figure 2 - Impact of the inflation parameter on MCL clustering results

(A) Impact of the inflation parameter on the clustering-wise Sensitivity (Sn), Positive Predictive Value

(PPV ) and geometric accuracy (Acc). Each curve represents the value of one evaluation statistics

(ordinate) as a function of the inflation parameter (abscissa). Color code: blue : Sn; red : PPV ; green :

Acc; grey : geometrical accuracy for the first random control (randomized graph); orange : geometrical

accuracy for the second random control (permuted clusters). (B) Number of complexes predicted as a

function of the inflation factor for the original test graph. Color code: blue : test graph; red : random

graph. (C) Sn, PPV and Acc scores obtained with a highly altered graph (A100,40). (D) Number of

complexes predicted as a function of the inflation factor for A100,40.

Figure 3 - Impact of the RNSC parameters on the clustering of an altered graph A100,40

Each dot represents the clustering-wise PPV and Sn value for one combination of the seven tested

parameters. Color code: blue : altered graph A100,20 (100% random edge addition and 20% of random edge

removal); orange : randomized graph R100,40; grey : permuted clusters.

Figure 4 - Robustness of the algorithms to random edge addition and removal

Each curve represents the value of accuracy (left panels) or separation (right panels). (A-B) edge addition

to the test graph. (C-D) edges removal from the test graph. (E-F) Edge removal from an altered graph

with 100% of randomly added edges. (G-H) Edge addition to an altered test graph with 40% of randomly

removed edges. Color code: blue : MCL, red : RNSC, orange : MCODE, green : SPC. Dotted lines show

the results obtained by permuting the clusters (negative control).

Figure 5 - Application of clustering on high-throughput data sets

(A) Cluster-wise separation. (B) Complex-wise separation. (C) Clustering-wise separation. Color code:

blue : mass-spectrometry data set from Gavin et al. (2002); green : mass-spectrometry data set from

Gavin et al. (2006); grey : mass-spectrometry data set from Ho et al. (2002); orange : two-hybrid data set

from Ito et al. (2001); yellow : two-hybrid data set from Uetz et al. (2000); purple: mas-spectrometry data

set from Krogan et al. (2006). Shaded boxes show the results obtained by permuting the clusters (negative

control).
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Tables
Table 1 - Main features of the graph clustering approaches presented in this study.

Restricted
Neighborhood

Search Clustering
(RNSC)

Markov Clustering (MCL) Molecular
Complex
Detection
(MCODE)

Super-paramagnetic
clustering (SPC)

Type Local search cost
based

Flow simulation Local
neighbourhood
density search

Hierarchical

Allow multiple
assignations

No No Yes No

Allow unassigned nodes No No Yes No

Edge-weighted graphs
supported

No Yes No Yes

First application Protein complex
prediction

Protein family detection Protein complex
detection

Other applications /

Identification of ortholog

groups, protein complexes,

peer-to-peer node clustering,

image retrieval, Word Sense

Discrimination, molecular

pathway discovery, structural

domains, . . .

/

Image clustering, microar-

ray data clustering, pro-

tein complexes detection,

protein structure classi-

fication, identification of

ortholog groups, ...

Availability Upon request http://micans.org/mcl/ ftp://ftp.blueprint.org Upon request

Developper King AD Van Dongen S Bader GD and
Hogue CWV

Blatt M, Wiseman S,
Domany E

References [21] [35] [19] [18]
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Table 2 - Optimal values for MCL inflation parameter for the test and altered graphs

% removal \ % addition 0 5 10 20 40 80 100

0 3.4 3.1 2.7 2.4 2 1.8 1.8
5 5.7 4 2.6 2 1.9 1.8 1.8
10 2.35 2.2 2.2 2.3 1.8 1.8 1.8
20 1.7 2.2 2.1 2 1.8 1.7 1.8
40 1.8 1.8 1.8 1.9 1.7 1.7 1.7
80 1.3 1.4 1.5 1.5 1.5 1.6 1.6

Table 3 - Optimal parameters

Algorithm Parameter Optimized for accuracy Optimized for separation
MCL Inflation 1.8 1.8

MCODE

Depth 100 5
Node score percentage 0 0

Haircut TRUE TRUE
Fluff FALSE FALSE

Percentage for complex fluffing 0.2 0.9

RNSC

Diversification frequency 50 50
Shuffling diversification length 9 3

Tabu length 50 50
Tabu list tolerance 1 1

Number of experiments 3 3
Naive stopping tolerance 1 15
Scaled stopping tolerance 15 15

SPC
Number of nearest neighbours 15 10

Temperature 0.132 0.116
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Table 4 - Schematic illustration of a contingency table, and the derived statistics
Counts

T cluster 1 cluster 2 cluster 3 cluster 4 cluster 5 sum complex size

complex 1 7 0 0 0 0 7 7

complex 2 0 6 8 0 0 14 14

complex 3 0 0 0 14 3 17 20

complex 4 0 0 0 4 5 9 8

sum 7 6 8 18 8 47

cluster size 7 6 8 16 8

Positive Predictive Value (PPV)
PPV cluster 1 cluster 2 cluster 3 cluster 4 cluster 5
complex 1 1 0 0 0 0

complex 2 0 1 1 0 0

complex 3 0 0 0 0.78 0.38

complex 4 0 0 0 0.22 0.62

cluster-wise
PPV

1 1 1 0.78 0.62

Sensitivity
Sn cluster 1 cluster 2 cluster 3 cluster 4 cluster 5 complex-wise

Sn
complex 1 1 0 0 0 0 1

complex 2 0 0.43 0.57 0 0 0.57

complex 3 0 0 0 0.70 0.15 0.70

complex 4 0 0 0 0.50 0.62 0.62

Frequency per row
Frow cluster 1 cluster 2 cluster 3 cluster 4 cluster 5
complex 1 1 0 0 0 0

complex 2 0 0.43 0.57 0 0

complex 3 0 0 0 0.82 0.18

complex 4 0 0 0 0.44 0.56

Separation
C cluster 1 cluster 2 cluster 3 cluster 4 cluster 5 complex-wise

separation
complex 1 1 0 0 0 0 1

complex 2 0 0.43 0.57 0 0 1

complex 3 0 0 0 0.64 0.07 0.71

complex 4 0 0 0 0.10 0.35 0.45

cluster-wise sep-
aration

1 0.43 0.57 0.74 0.41

Clustering-wise sensitivity 0.69

Clustering-wise PPV 0.85

Accuracy 0.77

Average cluster-wise separation 0.63

Average complex-wise separation 0.79

Clustering-wise separation 0.70

24



Table 5 - Mutually overlapping clusters obtained under some parameter conditions with MCODE

cluster \ cluster 1 2 3 4 5 . . . 49 50 51 52 . . . 102 103 . . . 607

1 81 80 79 78 77 . . . 47 46 0 0 . . . 0 32 . . . 0
2 80 80 79 78 77 . . . 47 46 0 0 . . . 0 32 . . . 0
3 79 79 79 78 77 . . . 47 46 0 0 . . . 0 32 . . . 0
4 78 78 78 78 77 . . . 47 46 0 0 . . . 0 32 . . . 0
5 77 77 77 77 77 . . . 47 46 0 0 . . . 0 32 . . . 0
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
49 47 47 47 47 47 . . . 47 46 0 0 . . . 0 32 . . . 0
50 46 46 46 46 46 . . . 46 46 0 0 . . . 0 32 . . . 0
51 0 0 0 0 0 . . . 0 0 46 0 . . . 0 0 . . . 0
52 0 0 0 0 0 . . . 0 0 0 46 . . . 32 0 . . . 0
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
102 0 0 0 0 0 . . . 0 0 0 32 . . . 32 0 . . . 0
103 32 32 32 32 32 . . . 32 32 0 0 . . . 0 32 . . . 0
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
607 0 0 0 0 0 . . . 0 0 0 0 . . . 0 0 . . . 3
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Table 6 - Main features of the four large scale data sets and clustering performances of the algorithms
when applied to them

Dataset Nb

nodes

Nb

edges

Mean

de-

gree

Mean

clust

co-

eff

MCL MCODE RNSC SPC

real permuted real permuted real permuted real permuted

Uetz et al. [1] 926 865 1.175 0.018

Number of clusters 288 10 48 234
Mean nb prot/cluster 3.22 3.4 1.91 3.96

Median nb prot/cluster 3 3 2 2
Largest cluster size 16 4 6 276

Sn 57.3% 38.6% 95.5% 54.5% 49.4% 36.5% 65.5% 43.3%
PP V 53.8% 45.9% 40.9% 31.8% 59.6% 54.4% 38.0% 38.9%
Accg 55.6% 42.3% 62.5% 41.7% 54.5% 45.5% 51.8% 41.1%
Sepco 23.0% 20.6% 43.3% 37.2% 15.5% 14.8% 19.1% 21.2%
Sepcl 30.1% 26.9% 2% 1.7% 34.3% 32.7% 20.3% 22.6%
Sep 26.3% 23.5% 9.2% 7.9% 23.1% 22.0% 19.7% 21.9%

Ito et al. [2] 2937 4038 2.682 0.019

Number of clusters 630 20 1746 410
Mean nb prot/cluster 4.66 3.8 1.68 7.16

Median nb prot/cluster 3 3 2 2
Largest cluster size 157 9 4 1928

Sn 34.9% 26.0% 100% 70% 31.4% 24.0% 73.2% 64.6%
PP V 42.7% 38.5% 75% 75% 63.6% 61.8% 24.3% 23.8%
Accg 38.8% 32.2% 86.6% 67.5% 47.5% 42.9% 48.8% 44.2%
Sepco 12.7% 11.8% 40% 35.2% 7.1% 7.0% 11.3% 11.0%
Sepcl 36.2% 33.9% 3.6% 3.2% 56.7% 55.9% 20.1% 20.4%
Sep 21.4% 20% 8.4% 10.6% 20.1% 19.8% 15.4% 15.0%

Ho et al. [5] 1564 3600 4.6 0.029

Number of clusters 314 18 957 63
Mean nb prot/cluster 5.94 49.5 1.63 24.8

Median nb prot/cluster 3.5 13 1 3
Largest cluster size 36 432 8 1383

Sn 50.6% 28.2% 91.8% 70.7% 37.0% 27.4% 90.1% 92.1%
PP V 47.1% 35.6% 41.4% 29.3% 61.5% 57.1% 10.4% 8.2%
Accg 48.9% 31.9% 62.6% 45.5% 49.3% 42.2% 50.2% 50.2%
Sepco 22.6% 19% 48.6% 46% 11% 10.5% 19.3% 13.8%
Sepcl 32.3% 27.1% 4% 3.8% 48% 45.6% 5.5% 4.0%
Sep 27.0% 22.7% 13.9% 13.2% 23% 21.9% 10.3% 7.4%

Gavin et al. [4] 1352 3210 4.7 0.148

Number of clusters 212 42 709 87
Mean nb prot/cluster 6.38 3.9 1.91 15.5

Median nb prot/cluster 4 3 1 2
Largest cluster size 54 7 16 1074

Sn 74.1% 24.2% 92.6% 42.6% 52.1% 20.8% 91.8% 81.4%
PP V 57.0% 23.9% 60.1% 29.1% 62.0% 46.0% 18.1% 10.7%
Accg 65% 24.0% 74.6% 35.2% 57.1% 33.4% 54.9% 46.0%
Sepco 39.4% 17.6% 69.1% 37% 14.5% 11.3% 34.4% 15.7%
Sepcl 38.0% 17.0% 13.2% 7.1% 46.9% 36.5% 13.6% 6.2%
Sep 38.7% 17.3% 30.2% 16.2% 26.1% 20.3% 21.6% 9.8%

Gavin et al. [6] 1430 6531 9.1 0.348

Number of clusters 189 85 487 136
Mean nb prot/cluster 7.57 4.6 2.94 10.5

Median nb prot/cluster 4 4 2 3
Largest cluster size 90 14 35 620

Sn 75.7% 23.7% 82% 29.9% 60.8% 20.9% 79.8% 48.4%
PP V 54.3% 21.0% 61% 25.9% 63.3% 37.3% 37.0% 16.5%
Accg 65.0% 22.4% 70.7% 27.8% 62.1% 29.1% 58.4% 32.4%
Sepco 38.1% 15.5% 57.1% 24.6% 20.1% 12.9% 34.9% 14.9%
Sepcl 32.7% 13.3% 22.1% 9.5% 44.5% 28.6% 21.6% 9.2%
Sep 35.3% 14.4% 35.5% 15.3% 29.9% 19.2% 27.4% 11.7%

Krogan et al. [7] 2675 7088 5.296 0.146

Number of clusters 813 81 1405 114
Mean nb prot/cluster 4.93 5 2.1 10.3

Median nb prot/cluster 3 4 2 3
Largest cluster size 50 28 21 1724

Sn 62.8% 19.8% 79.5% 28.9% 53.1% 19.1% 82.6% 64.0%
PP V 56.2% 33.5% 62.8% 26.2% 63.3% 51.1% 25.4% 17.2%
Accg 59.5% 26.7% 70.6% 27.5% 58.2% 35.1% 54.0% 40.6%
Sepco 20.0% 12.1% 42.4% 22.5% 10.3% 8.7% 20.3% 11.9%
Sepcl 49.5% 29.9% 15.5% 8.3% 59.6% 50.3% 24.0% 14.1%
Sep 31.5% 19.0% 25.7% 13.6% 24.7% 21.6% 20.9% 12.9%

Additional Files
Additional File 1 : Supplementary information about the algorithms (PDF)

Additional File 2 : Optimal accuracy parameter values (PDF)

Additional File 3 : Optimal separation parameter values (PDF)

These files and supplementary figures are also available on http://rsat.scmbb.ulb.ac.be/∼sylvain/clustering evaluation.
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