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ription of the algorithms used in this study1.1 MCLThe Markov Cluster algorithm (MCL) is based on random walks on a graph, uses simple algebrai
operations on its asso
iated matrix, and does not require a priori knowledge about an underlying
luster stru
ture. As the matrix operations are very simple, the 
omputational time of thisprogram is very low. The MCL algorithm uses the notion of random walk for the retrieval of
luster stru
ture in a graph. In a random walk, at ea
h node the dire
tion to be followed is givenby 
han
e.Imagine a vast 
olle
tion of random walks, all starting from the same point. Walkers will ingeneral follow di�erent paths. An observer �oating high above them will see a �ow: the 
rowdslowly swirls and disperses. On
e inside a dense region (with many edges inside), a randomwalker has little 
han
e to get out. The idea behind MCL is very simple. Simulate manyrandom walks (or �ow) within the whole graph, and strengthen �ow where it is already strong,and weaken it where it is weak. By repeating the pro
ess, an underlying 
luster stru
ture willgradually be
ome visible. The pro
ess ends up with a number of regions with strong internal�ow (
lusters), separated by dry boundaries with no �ow.Mathemati
ally, �ow is simulated by algebrai
 operations on the sto
hasti
 (Markov) matrixasso
iated with the graph. Flow 
an be expanded by 
omputing powers of this matrix. Let's Gbe a graph. The asso
iated Markov matrix asso
iated to it is de�ned by normalizing all 
olumnsof the adja
en
y matrix of G. Note that ea
h node presents a self-loop (for sake of e�
ien
y).This Markov matrix then represents how ea
h node is attra
ted to the others. Values 
ontainedin this matrix are 
alled transition values. At the �rst step, we 
an state that ea
h node isequally attra
ted to all of its neighbours or at ea
h node, one moves to ea
h of its neighbours1



with equal probability. For any Markov matrix N , the powers N(i) have a limit (whi
h may be
y
li
). When this limit is rea
hed, no node seems attra
ted mainly by another one.However, the initial iterands seems to exhibit a behaviour where transition value are relativelyhigh if the two 
on
erned nodes are lo
ated in the same dense region. To in
rease this e�e
t,one operation, 
alled the in�ation, is added to the pro
ess. At ea
h step, the algorithm will thus
hange transition values su
h that preferred neighbours are further favoured and less popularneighbour are demoted. The way to a
hieve this is by raising all the entries of a 
ertain 
olumnto a 
ertain power (the in�ation fa
tor) and res
aling the 
olumns to have sum 1 again. Thein�ation fa
tor must be greater than 1, and the greater this fa
tor, the greater the number of
lusters. The matrix obtained after squaring, s
aling and in�ating a large number of time tendsto an equilibrium state with delivers the 
luster stru
ture of the graph indi
ating 
learly whi
hnodes are 
learly linked to ea
h others.1.2 RNSCRNSC is a 
ost-based lo
al sear
h algorithm that works to minimize a 
ost fun
tion in the solutionspa
e. The basi
 prin
iple underlying lo
al sear
h is to start from an initial 
andidate solutionand then, iteratively, to make moves from one 
andidate solution to another of the 
andidatesolutions from its dire
t neighbourhood. The moves are based on lo
al information, and 
ontinueuntil a termination 
ondition is met. Starting from an initial random or user input 
lustering,RNSC sear
hes a better 
lustering using a simple integer-valued 
ost fun
tion, the naive 
ostfun
tion. This naive 
ost fun
tion 
al
ulates the sum for ea
h vertex i

• the number of neighbours of i that are not in the same 
luster
• the number of verti
es that are in the same 
luster than i but not 
onne
ted to it.;This sum is divided by 2. For an optimal 
lustering, these values have to be low for allverti
es. When a user-de�ned number of moves has been done without de
reasing the naive 
ostfun
tion, the program shifts to the real-value s
aled 
ost fun
tion whi
h also takes into a

ountthe size of the 
luster during the 
al
ulations.At ea
h iteration, one node is moved from one 
luster to another. If this move de
reased thenaive or the s
aled 
ost fun
tion, this move (
onsidered as an intensi�
ation move) is 
onserved.In order to avoid lo
al minima, a user-de�ned number of nodes are moved to random 
lustersa

ording to a user-de�ned frequen
y.In order to avoid 
y
ling ba
k to the previously explored partitioning, a list of verti
es thatmay not move is maintained. The size of this list and the number of time a vertex must be inthe list before being 
onsidered as non movable are user-de�ned.1.3 Super paramagneti
 
lusteringThis hierar
hi
al 
lustering algorithm has been used in numerous domains and is based on ananalogy to the physi
s of inhomogeneous ferromagnets. It uses this analogy to �nd tightly
onne
ted 
lusters on large graphs. Consider a 
olle
tion of sites {a, b, ..., n}. In a ferromagnet,ea
h pair of site (i, j) presents a non-zero intera
tion energy between them. We 
an thus form anintera
tion graph ([n], E) where the sites are the nodes and the weighted edges, the intera
tionenergy on ea
h pair. Following di�erent possible algorithms, the Potts Model attributes a spinvalue (s1, s2, ..., sn) to ea
h node in order to de
rease the following energy 
ost fun
tion.

H [{s}] = −
∑

〈i,j〉

Jijdsi,sj2



In this fun
tion, J is some monotoni
ally de
reasing fun
tion with the distan
e ‖xi − xj‖, sothat the 
loser two points to ea
h other, the more they like to belong to the same 
lass. d is 1when si and sj are equal, 0 otherwise. In order to give value to all sites, some di�erent algorithm
oexist. One of these is the Swendsen-Wang algorithm (Swendsen and Wang, 1987), whi
h is asfollows. In a parti
ular state of a spin system there are 
lusters of spins. A spin 
luster 
onsistsof a set of spins, ea
h of whi
h is a nearest neighbour to at least one other spin in the 
luster,with all spins having the same spin value. The Swendsen-Wang pro
ess 
onsists of two parts:(1) Creation of "virtual" spin 
lusters :If two spins are 
onne
ted by an open latti
e bond and those spins have the same value then a"virtual" bond is 
reated between them with probability 1− e−J/T , where T is the temperature.Thereby ea
h spin 
luster is partitioned into (smaller) virtual spin 
lusters.(2) The se
ond part of the Swendsen-Wang pro
ess :For ea
h virtual spin 
luster, sele
t a spin value at random (from among all possible spinvalues) and assign that spin value to all spins in the virtual 
luster. This pro
ess is then repeated.Domany et 
o-workers used an analogy to this Potts model in order to 
luster graphs. Inthis approa
h, every node i on the graph is assigned a label si, whi
h takes an integer spin valuewhi
h 
orresponds to a Potts spin variable. Two nodes i and j are neighbours if j is one of the
k nearest points to i (k, being spe
i�ed by user) and they intera
t with strength Jij inverselyproportional to the distan
e between them. This distan
e is the weight value on ea
h edge. Atnon-zero temperature, the system is subje
t to equilibration making spins �u
tuate (Swendsen-Wang pro
ess). By dete
ting spin-spin 
orrelation at ea
h temperature, verti
es are pla
ed inthe same 
luster. By varying the temperature from 0 to 1, the 
lustering resolution 
hanges anda hierar
hi
al 
lustering is obtained. At temperature 0, all verti
es are pla
ed in the same 
lusterwhi
h splits as temperature in
reases.1.4 MCODEMCODE uses a vertex-weighting s
heme based on the 
lustering 
oe�
ient whi
h measures thedensity of the neighbourhood of a vertex. The density of an unweighted graph is the proportionof possible edge that are present. The density of a graph G = (V, E) with number of verti
es
‖V ‖ and number of edges ‖E‖ is de�ned as ‖E‖ divided by the theoreti
al maximum number ofedges possible for the graph ‖E‖max, (‖E‖max being equal to ‖V ‖(‖V ‖+1)

2 , if the graph 
ontainsloops and ‖V ‖(‖V ‖−1)
2 if the graph 
ontains no loop). The MCODE algorithm operates in threesteps :1.4.1 Vertex weightingThe highest k-
ore of a graph is the 
entral most densely 
onne
ted subgraph. The �rst stageof MCODE 
onsists in weighting all verti
es using the lo
al network density using the highestk-
ore of vertex neighbourhood.1.4.2 Mole
ular 
omplex predi
tionStarting from the highest valued vertex, MCODE will try to 
ompute 
lusters. It will in
lude inthe 
luster the verti
es whose weight is above a given threshold, whi
h is a given per
entage fromthe weight of the seed vertex. This per
entage is the VWP parameter (vertex weight per
entage).A vertex is not 
he
ked more than on
e, be
ause at this stage, 
lusters 
annot overlap. Thispro
ess stops on
e no more verti
es 
an be added to the 
omplex based on the given thresholdand is repeated for the next highest valued vertex.3



1.4.3 Post-pro
essingComplexes are �rst �ltered to 
ontain graph with minimum degree 2. If the algorithm is runwith the �u� option, then the neighbours of the 
lusters are added to them if their value ishigher than a given �u� parameter (between 0 and 1). If the hair
ut option is run, the 
luster is2-
ored, meaning that the verti
es linked to 
luster by a single edge are removed. The resulting
lusters are then s
ored and ranked. The s
ore is de�ned as the produ
t of the 
luster subgraphdensity and the number of verti
es.
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